Spectroscopic and Kinetic Characterization of Peroxidase-Like π-Cation Radical Pinch-Porphyrin-Iron(III) Reaction Intermediate Models of Peroxidase Enzymes.
نویسندگان
چکیده
The spectroscopic and kinetic characterization of two intermediates from the H₂O₂ oxidation of three dimethyl ester [(proto), (meso), (deuteroporphyrinato) (picdien)]Fe(III) complexes ([FePPPic], [FeMPPic] and [FeDPPic], respectively) pinch-porphyrin peroxidase enzyme models, with s = 5/2 and 3/2 Fe(III) quantum mixed spin (qms) ground states is described herein. The kinetic study by UV/Vis at λmax = 465 nm showed two different types of kinetics during the oxidation process in the guaiacol test for peroxidases (1-3 + guaiacol + H₂O₂ → oxidation guaiacol products). The first intermediate was observed during the first 24 s of the reaction. When the reaction conditions were changed to higher concentration of pinch-porphyrins and hydrogen peroxide only one type of kinetics was observed. Next, the reaction was performed only between pinch-porphyrins-Fe(III) and H₂O₂, resulting in only two types of kinetics that were developed during the first 0-4 s. After this time a self-oxidation process was observed. Our hypotheses state that the formation of the π-cation radicals, reaction intermediates of the pinch-porphyrin-Fe(III) family with the ligand picdien [N,N'-bis-pyridin-2-ylmethyl-propane-1,3-diamine], occurred with unique kinetics that are different from the overall process and was involved in the oxidation pathway. UV-Vis, ¹H-NMR and ESR spectra confirmed the formation of such intermediates. The results in this paper highlight the link between different spectroscopic techniques that positively depict the kinetic traits of artificial compounds with enzyme-like activity.
منابع مشابه
Reaction of ferric cytochrome P450cam with peracids: kinetic characterization of intermediates on the reaction pathway.
Reactions of substrate-free ferric cytochrome P450cam with peracids to generate Fe=O intermediates have previously been investigated with contradictory results. Using stopped-flow spectrophotometry, the reaction with m-chloroperoxybenzoic acid demonstrated an Fe(IV)=O + porphyrin pi-cation radical (Cpd I) (Egawa, T., Shimada, H., and Ishimura, Y. (1994) Biochem. Biophys. Res. Commun. 201, 1464-...
متن کاملHaem iron-containing peroxidases.
Peroxidases are enzymes that utilize hydrogen peroxide to oxidize substrates. A histidine residue on the proximal side of the haem iron ligates most peroxidases. The various oxidation states and ligand complexes have been spectroscopically characterized. HRP-I is two oxidation states above ferric HRP. It contains an oxoferryl (= oxyferryl) iron with a pi-radical cation that resides on the haem....
متن کاملComparison of peroxidase reaction mechanisms of prostaglandin H synthase-1 containing heme and mangano protoporphyrin IX.
Prostaglandin H synthase (PGHS) is a heme protein that catalyzes both the cyclooxygenase and peroxidase reactions needed to produce prostaglandins G2 and H2 from arachidonic acid. Replacement of the heme group by mangano protoporphyrin IX largely preserves the cyclooxygenase activity, but lowers the steady-state peroxidase activity by 25-fold. Thus, mangano protoporphyrin IX serves as a useful ...
متن کاملPeroxidase activity enhancement of horse cytochrome c by dimerization.
The peroxidase activity of horse cytochrome c was enhanced by its dimerization, where its Compound III (oxy-form) and Compound I (oxoferryl porphyrin π-cation radical) species were detected in the reactions with hydrogen peroxide and meta-chloroperbenzoic acid, respectively. These results show that oligomeric cytochrome c can contribute as a proapoptotic conformer by the increased peroxidase ac...
متن کاملThe pH dependence of the mechanism of reaction of hydrogen peroxide with a nonaggregating, non-mu-oxo dimer-forming iron (III) porphyrin in water.
The reaction of hydrogen peroxide with 5, 10,15,20-tetrakis(2,6-dimethyl-3-sulfonatophenyl)porphinato- iron(III) hydrate [(P)FeIII(H2O)] has been investigated in water between pH 1 and pH 12. The water-soluble (P)FeIII(H2O) neither aggregates nor forms a mu-oxo dimer. The pH dependence and rate-limiting second-order rate constants (kly) for oxygen transfer from H2O2 and HO2- to the iron(III) po...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecules
دوره 21 7 شماره
صفحات -
تاریخ انتشار 2016